Solution of the Neumann problem for a linear self-adjoint differential equation of the second order with variable coefficients by the Fourier transform method

Authors

  • G. Yu. Ermolenko Novorossiisk Branch of Belgorod V G Shukhov State Technology University
  • T. L. Chungurova Novorossiisk Branch of Belgorod V G Shukhov State Technology University

Keywords:

Neumann problem, self-adjoint differential equation, first Green’s formula, Fourier transform, convolution theorem

Abstract

In this article, the method of Fourier transforms is applied to solve the differential equations of the Neumann problem: a linear self-adjoint differential equation of the second order with variable coefficients.

References

Михлин C. Г. Курс математической физики. М.: Наука, 1968. 575 c.

Ермоленко Г. Ю. Напряженно-деформированное состояние упругих и вязкоупругих конечных тел произвольной формы при статических и динамических нагружениях. Самара, 2001. 149 с.

Published

2021-07-18

How to Cite

Ермоленко, Г. Ю., & Чунгурова, Т. Л. . (2021). Solution of the Neumann problem for a linear self-adjoint differential equation of the second order with variable coefficients by the Fourier transform method. Вестник Новороссийского филиала Белгородского государственного технологического университета им. В. Г. Шухова. Серия: механика и математика, 1(2). Retrieved from https://vestnik-nbbstu-mechmath.ru/ojs/index.php/vnfbstumm/article/view/14

Issue

Section

Математика

Most read articles by the same author(s)