Solution of the Neumann problem for a non-self-adjoint differential equation

Authors

  • I. K. Andronchev Samara State Transport University
  • G. Yu. Ermolenko Novorossiisk Branch of Belgorod V G Shukhov State Technology University

Keywords:

Neumann problem, non-self-adjoint differential equation, Green's function, convolution theorem, multiple Fourier transform

Abstract

In this paper, using the Fourier transform and Green's formulas, the original boundary-value problem for a non-self-adjoint differential equation with variable coefficients is reduced to a boundary-value problem for a self-adjoint differential equation, which is solved by the method proposed by the authors.

References

Михлин C. Г. Курс математической физики. М.: Наука, 1968. 575 c.

Ермоленко Г. Ю. Напряженно-деформированное состояние упругих и вязкоупругих конечных тел произвольной формы при статических и динамических нагружениях. Самара, 2001. 149 с.

Published

2021-11-30

How to Cite

Андрончев, И. К. ., & Ермоленко, Г. Ю. (2021). Solution of the Neumann problem for a non-self-adjoint differential equation. Вестник Новороссийского филиала Белгородского государственного технологического университета им. В. Г. Шухова. Серия: механика и математика, 1(3), 007-009. Retrieved from https://vestnik-nbbstu-mechmath.ru/ojs/index.php/vnfbstumm/article/view/19

Issue

Section

Математика

Most read articles by the same author(s)