The fundamental solution of the equation with thermoelasticity operator

Authors

  • G. Yu. Ermolenko Novorossiisk Branch of Belgorod V G Shukhov State Technology University
  • O. V. Mkrtychev Novorossiisk Branch of Belgorod V G Shukhov State Technology University

Keywords:

boundary value problem of thermoelasticity, problem of heat conduction, Fourier transform, Kelvin–Somigliana tensor

Abstract

In this paper, a fundamental solution of the thermoelasticity problem for an anisotropic material is constructed. The deformable body is assumed to be finite, bounded by a piecewise smooth surface and having an arbitrary shape

References

Купрадзе В. Д., Гегелиа Т. Г., Башелейшвили М. О., Бурчуладзе Т. В. Трёхмерные задачи математической теории упругости и термоупругости. М: Наука, 1976. 662 с.

Published

2022-08-28

How to Cite

Ермоленко, Г. Ю., & Мкртычев, О. В. (2022). The fundamental solution of the equation with thermoelasticity operator. Вестник Новороссийского филиала Белгородского государственного технологического университета им. В. Г. Шухова. Серия: механика и математика, 2(2), 026-028. Retrieved from https://vestnik-nbbstu-mechmath.ru/ojs/index.php/vnfbstumm/article/view/31

Issue

Section

Механика

Most read articles by the same author(s)

1 2 > >>